Rubik Code

Deciphering What Today's Energy Codes Mean For Lighting Practice

14 MIN READ

Paul Hoppe

Starting with 90.1-2004, lighting power allowances were reduced significantly, and you had to pay more attention to the limits. But it’s still pretty easy to produce quality lighting design without much additional effort. The lighting power allowances that will be in 90.1-2010 are based on using high-performance T8 and ceramic metal-halide sources wherever appropriate. Quality lighting will be possible, but it will require extra effort and very careful design choices and light-source selection. IECC-2012 lighting power allowances will be even more stringent. Designers will have to be very careful with their use of energy in order to meet code. Expertise in lighting design will require a deep knowledge of code requirements, and the skill to get the most out of limited power budgets.

The third trend is less “adoption lag.” Getting states to adopt the latest code is easier said than done. Currently, only 10 states have adopted the most recent standard, IECC-2009 or 90.1-2007. Ten states have either no statewide energy code at all, or are using standards older than 90.1-1999. The remaining states use something in between the two. This lag is typical, but I expect that its length will decrease, given the global push to reduce energy consumption and greenhouse gas emissions. Often it can take states years to get through the process of adopting new energy codes. But if more states follow the recent example of Massachusetts, then code lag adoption time will be very short in the future.

Last year, Massachusetts not only adopted IECC-2009 but wrote into law that newer versions of the IECC will automatically become code soon after publication. Also, if a federal energy bill gets through Congress it is likely to have in it financial carrots for states who adopt and enforce stringent energy codes (and sticks for states who don’t). Every state, in accepting money from the American Recovery and Reinvestment Act, has certified its intent to adopt a building energy code that meets or exceeds the requirements of 90.1-2007, although it is not clear if this will be enforced.

The fourth trend is outcome-based codes. From the design professional’s point of view, the ideal energy code would tell us what the results need to be, and let us figure out how to get there. For example, don’t tell us how much connected load we can have for lighting, or what type of HVAC equipment we need to use, just tell us how much energy our building can use and let us figure out how to get there. Of course this is easier said than done, but the code development community is starting to investigate how this could be accomplished in practical, usable, and effective ways.

The promise for designers is flexibility. But with that freedom would come the need for a truly integrated design process, expertise in building-energy-modeling software, and, for the lighting designer, the capability to design sophisticated lighting control systems. Once you establish a limit for how much energy a building can use, regulators could start requiring building owners to certify actual energy usage, instead of merely certifying that the building should perform to code based on its design. If codes start to regulate actual performance, design professionals will have to grapple with the professional liability issues. Can we be held responsible for the energy performance of our building design when we are not responsible for its operation?

The final trend is to go beyond code programs. Some local governments, businesses, and institutions understand that energy codes only set a minimum baseline for acceptable performance. They desire tools to push their community’s energy use and carbon footprints even lower. Expect more better-than-code standards such as the Massachusetts Stretch Code. This is an appendix to the Massachusetts energy code that individual municipalities can adopt for their jurisdictions. It applies more stringent provisions on top of the energy code.

Anticipate increased energy performance requirements in green building ratings systems such as LEED and the Collaborative for High Performance Schools. And then there are the green building codes in development, which we will discuss next issue.

Glenn Heinmiller, IALD, is a principal at the architectural lighting design firm Lam Partners, based in Cambridge, Mass., and is the chair of the energy and sustainability committee of the International Association of Lighting Designers.

About the Author

No recommended contents to display.

Upcoming Events

  • Slate Reimagined: The Surprising Advantages of Slate Rainscreen Cladding

    Webinar

    Register Now
  • The State of Residential Design Today: Innovations and Insights from RADA-Winning Architects

    Webinar

    Register for Free
  • Specifying Smarter with Copper-Clad Aluminum (CCA) Metal-Clad Cable

    Webinar

    Register for Free
All Events