sustainable systems and materials THE BIG IDEAS AT WORK in the building won’t succeed without a nexus of sustainable systems and materials. “It’s a tightly woven relationship between environmental systems, building performance, and usability,” says Gill. If properly implemented, the latent systems and new technologies should produce 3 percent more energy than the building will use. And because of Masdar’s central political control, excess energy can be transferred to the grid.
In addition to generating its own power with photovoltaics—envisioned now as polycrystalline cells on the roof surface— the building uses solar vacuum tubes for air conditioning. Plus a geothermal system is being explored for additional cooling.
The architects also are proposing the use of wind turbines for power generation, a technology they used in a Chicago high-rise. Gill says the inclusion of wind turbines is conjectural at this point, awaiting further analysis of economic feasibility. But if the turbines become a demonstration project, they may be justifiable simply for data collection, he adds.
As the project moves forward, a key area for research and development will be the exterior wall, a critical component in minimizing the building’s thermal load. “During the competition, we were thinking in terms of a masonry wall, eight stories tall and solid, with maybe 30 percent open,” Gill recalls. The ultimate goal is to thermally shield the building while allowing controlled daylight in to reduce the lighting load, and the design team is working with a manufacturer to develop a high-performance wall system.
Building materials will be evaluated with respect to what Gill calls “global environmental contextualism”—a phrase he uses to describe how a building should relate to its local environmental context while respecting its global context in terms of developing and available technologies. “What we are finding in terms of the sustainable performance of buildings is there can be a much greater global influence on the building,” he asserts. “It can be winds. It can be solar patterns. But, especially in today’s market, it can also be materials. One can look at a bigger pattern of access to material or at sustainable processes and bring those to the project in order to increase performance.” In the case of Masdar, the client is demanding cradle-to-cradle office interiors. But Gill says that seemingly simple performance standard raises a host of other questions. Where do the products and raw materials come from? What manufacturing processes are involved? And how do those factors impact zero-carbon and zero-waste goals?
toolbox design and presentation Adrian Smith + Gordon Gill Architecture designed the Masdar headquarters using AutoCAD, 3DS Max, and Rhino 3D. This software combination allowed the architects to analyze the building in three dimensions. In the competition process, AS+GG also created 3-D fly-through simulations for the jury to consider. Most of the modeling was done in-house before being turned over to an outside consultant for material-specific rendering. Gordon Gill explains: “The final product is out-of-house; the process is in-house.” Renderings are available for viewing on AS+GG’s website, smithgill.com.
solar studies Once the basic design was in place, the architects uploaded the information into Ecotect (squ1 .com/products/ecotect), a building-design and environmental-analysis tool developed by Square One Research. Gill recalls that this particular program was very useful in planning the energy-generation tactics that will make the Masdar headquarters a positive-energy building. “We use Ecotect to run radiosity performance diagrams,” he says. “In other words, you could run a solar study on it, which allows you to see where the greatest heat is occurring on your wall surfaces. You can begin to see where it protects it and where it does not.”
wind studies The architects used other types of models, such as CFD or computational fluid dynamic models, to analyze the effect and performance of the wind cones. The engineers also used these models in more directed and specific tests on the wind cones. “They ran wind speeds of 3.5 meters per second to see what kind of negative draw they were getting on the cone vertically,” Gill says. “So they knew what kind of wind they were creating.”
PROJECT Masdar Headquarters, Masdar City, Abu Dhabi, United Arab Emirates
CLIENT The Masdar Initiative, Abu Dhabi, United Arab Emirates
ARCHITECT Adrian Smith + Gordon Gill Architecture, Chicago—Gordon Gill, Adrian Smith (design partners); Robert Forest (management partner); Les Ventsch (director of design); Gail Borthwick, Ying Liu (senior designers)
STRUCTURAL ENGINEERING CONSULTANT Thornton Tomasetti
M/E/P ENGINEERING CONSULTANT Environmental Systems Design
SIZE 1.5 million square feet